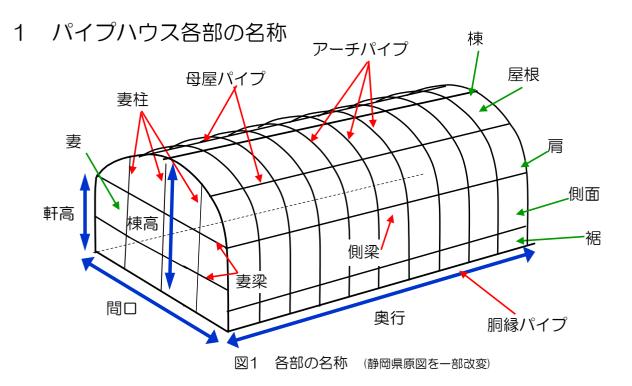
農業用パイプハウス強化マニュアル


一防災・減災の手引き一

令和5年11月 鳥取県農業気象協議会・鳥取県

目 次

1	パイプハウス各部の名称 ・・・・・・・・・・・・・・・・・・・・・・・・ 1 ページ
2	
3	
	(1)筋交い(スジカイ)直管による補強
	(2) タイバーによる補強(T型)
	(3)X型補強
	(4) 脚部腐食の補修
4	パイプハウスの補強方法 一雪害編ー ・・・・・・・・・・・・・・・・6ページ
	◇積雪によるパイプハウス倒壊のメカニズム
	(1)中柱による補強
	(2)水平引っ張り線による補強
5	パイプハウスの補強方法 一強風害編ー ・・・・・・・・・・・・・・8ページ
	◇強風によるパイプハウス倒壊のメカニズム
	(1) 風上側の肩部分から屋根の破損を防止する補強
	(2) 妻面からの破損を防止する補強
6	ブドウ連棟ハウスの補強方法(風害対策)・・・・・・・・・・・11ページ
	(1) Xタイバーによるアーチパイプの補強
	(2) アンカーによる補強
	(3) ブレースによる補強
7	大雪による農業用パイプハウスの倒壊要因の解析 ・・・・・・・15ページ
	(1)調査方法
	(2) 倒壊要因の解析
	(3) まとめ
8	3 園芸施設共済制度の活用について20ページ
9) 雪害を防止するためのチェックリスト21ページ
	(1) 冬期前までに確認しておくチェック項目
	(2) 降雪の予報が出た前日のチェック項目
	(3) 降雪時のチェック項目
	(4) 降雪後のチェック項目
10) 強風・台風被害を防止するためのチェックリスト・・・・・・23ページ
	(1) 普段から確認しておくチェック項目
	(2) 台風・強風の襲来前のチェック項目
	(3) 台風・強風の襲来直前のチェック項目
	(4) 台風・強風の襲来後のチェック項目

2 補強を行うハウスの保守及び補修

補強を行うパイプハウスは、本体構造物に消耗、破損、滅失のないことを前提とします。ボルトナットや金具のクサビ、ジョイント等の緩みや脱落がないか点検し、保守作業を行います。また、パイプ等の部材の腐食や変形、損傷や破損については、耐風・耐雪強度を大幅に損ねるので、必要な補修を必ず行ってください。

保守と補修は、補強の有無に関わらず、ハウスの強度を維持するための基本的な事項として継続的に実施してください。

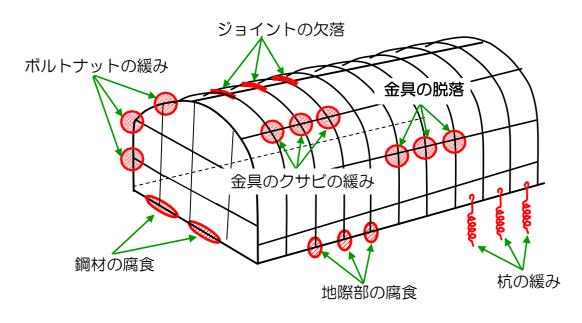


図2 パイプハウスの主な点検項目 (静岡県原図を一部改変)

3 パイプハウスの補強方法一雪害・強風害共通編一

(1)筋交(スジカイ)直管による補強

筋交はパイプハウスを剛強に固め、奥行き方向及び間口方向の倒れを防止し、さら に不均等な積雪によるパイプアーチの横倒れを防止する役目を担っています。

筋交い直管による補強によってハウス全体の耐力が20%程度向上します。

図3のとおり、ハウスの妻面の棟からアーチパイプに沿わせて斜めの直管を取り付けます。端は30cm以上土中に埋め込みます。

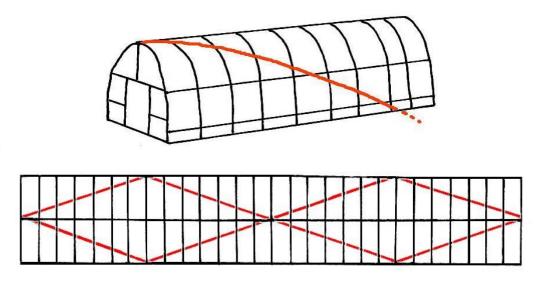


図3 筋交いの設置方法(平面図)

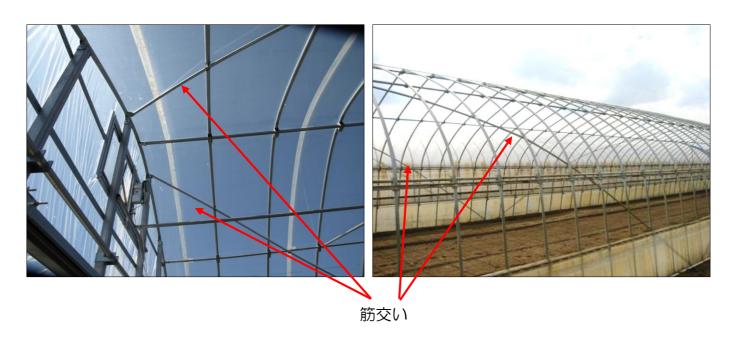
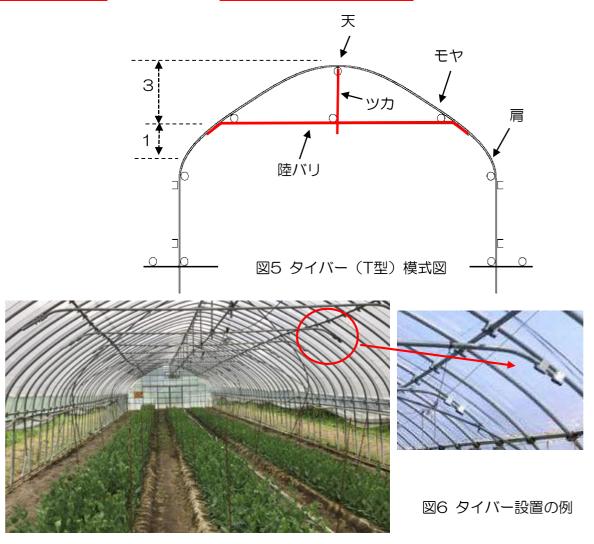



図4 筋交い設置の事例

(2) タイバーによる補強(T型)

図5のとおり、肩から天の高さの1/4の位置にタイバーを取り付けるのが補強方法としては有効です。

<u>アーチパイプ4本おきに設置</u>した場合、取り付けていないハウスに比べて<u>雪への耐力</u>は43%程度向上します。また、風への耐力は6%程度向上します。

アーチパイプ4本おきにタイバーが取り付けてあります(図6)。タイバーは水平の'ハリ'(陸バリ)パイプと短い垂直の'ツカ'パイプで構成されています。パイプ径は取り付けハウスのアーチパイプと同じ太さのものを使用します。なお、図6写真右のように端がへの字に曲がった曲管を使っている事例もあります。

ツカと天は差し込みT金具や自在Tバンドで、陸バリとアーチパイプは自在Tバンドやユニバーサルジョイント等で固定します。陸バリが曲管の場合はバインドクロスで、ツカと陸バリはクロスワンで固定し、さらにビスで緩み止めの固定を行います。

(3) X型補強

図7のとおり、肩から天の高さの3/4の位置のアーチパイプまたはモヤと肩を結ぶように直管パイプでX型に補強する方法が、前述のタイバーによる補強よりもより効果的です。パイプ径は取り付けハウスのアーチパイプと同じ太さのものを使用します。

<u>アーチパイプ4本おきに設置</u>した場合、取り付けていないハウスに比べて<u>雪への耐力</u> は65 %程度向上します。また、風への耐力は9 %程度向上します。

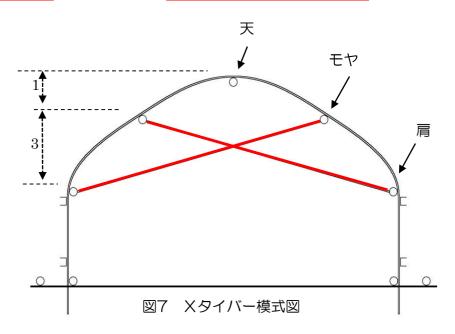


図8 Xタイバーによる補強の事例

直管とモヤおよび肩部は差し込みT金具や自在Tバンドなどの金具で固定し、直管の交差部分はアングルバンドで固定します。ハウスの構造上、直管とアーチパイプを固定する場合は自在Tバンドやユニバーサルジョイント等で固定します。

アングルバンド

ユニバーサルジョイント

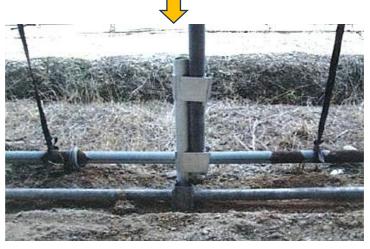
(4) 脚部腐食の補修

脚部に腐食がある場合、強風や積雪に対して極端に強度が低下します。地際部が腐食している場合は補強用パイプ(同じ太さの新しいパイプ)を差し込み、腐食したアーチパイプを固定して補強します。

接地部が腐食し地面から離れて - 浮き上がっている。

腐食したアーチパイプに沿わせて、同じ太さの新しいパイプを打ち込みます。

深さ40cmを目安に打ち込 み、上にも30~40cm出るよ うにします)。


打ち込む深さを確認できるよう、目印を付けておきます。

アーチパイプと、補強用に打ち込んだパイプを接続金具(バインドクロス)で上下2か所つなぎます。

バインドクロス

補強完成写真

補強するパイプ数(何本おきに 補強するか)は、腐食の状況に よって違いますが、腐食が厳しい 場合は、全てのアーチパイプに補 強が必要です。

また、写真のようにバンド止めパイプ(ハウスバンドを結んだ水平のパイプ)の腐食が激しいい場合は、併せて交換しておきましょう。

4 パイプハウスの補強方法一雪害編一

◇積雪によるパイプハウス倒壊のメカニズム

過剰に雪が降り積もると、パイプは雪の重みで曲ります(図9)。パイプはハウス肩部が最も曲がりやすく、次いで屋根中央部、天頂部の順になります。したがって、ハウスの変形はまず肩部から起こります。パイプの変形は肩部では外側方向に、屋根中央部では内側方向に起こるため、ハウスは次第に扁平な形になり、最後には倒壊します。

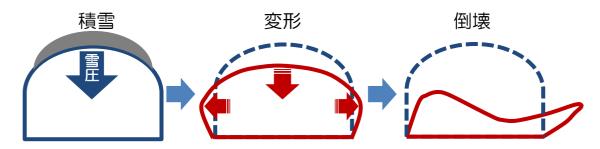


図9 積雪荷重によるパイプハウスの変形・倒壊

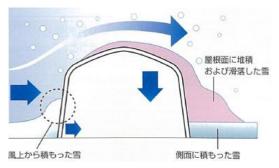


図10 偏荷重による倒壊 (渡辺パイプ原図)

風向きによっては吹き溜まりが生じ、偏荷重による 倒壊の危険があります。この場合は、前述のタイバ ーによる補強が効果的です。

(1) 中柱による補強

積雪荷重による屋根中央部の沈み込み防止のため、図11、図12のとおり、ハウス中央の棟部に、3mおきに中柱を設置します。支柱の長さを調節できる専用資材もありますが、Tタイバーのツカパイプに差し込む方法や木材、竹などを利用できます。中柱は外れないようにパイプに固定し、さらに、沈下防止のため、底部は板やブロックなどを必ず設置します。固定や沈み込み防止がない場合、ハウス上の雪がずり落ちた際にパイプの復元作用でパイプが跳ね上がりで中柱が外れることがあります。

なお、<u>中柱は必ず垂直に設置することが重要</u>です。斜めに設置すると上から加重がかかった場合に横方向に力が働き、倒壊の原因となります。

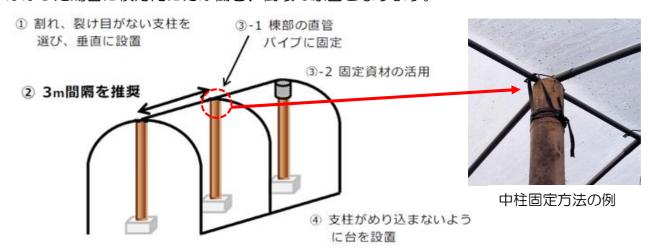


図11 中柱の設置方法

図12 中柱の設置例

柱を図13、図14のように加工するとズレにくい。竹を使う場合は節の近くを切断すると裂けにくい。また、切り口に番線をまく方法も割れ防止のため有効です。

図13 中柱先端の加工 (鳥取県農業共済組合原図)

図14 中柱先端の加工と固定

(2) 水平引っ張り線による補強

図15のとおり、番線やブレースを活用し、肩部の外側方向への変形を防止する方法も効果的で、パイプより日陰が少なくなる利点もあります。

番線は10~8番線(3~4mm)を2m間隔で張ります。番線の張り具合で倒壊の危険を予測できます。

ただし、<u>積雪が肩部より高くなると垂直方向以外からも圧力を受け、効果がなくな</u>るため、タイバーや中柱による補強が必要です。

図15 水平引っ張り線による補強の例と番線を留めるワイヤークリップ (群馬県原図を一部改変)

5 パイプハウスの補強方法一強風害編一

◇強風によるパイプハウス倒壊のメカニズム

パイプハウスは強風が吹くと風上側のアーチは押されて斜め上に伸び、逆に風下側のアーチは押し出されるように膨らみます。変形することによって一時的な強い力を逃がし、風が弱まればパイプの弾力によってもとの形に戻る柔構造といえます。

しかし、風圧がパイプの復元力を超えると、図16、図17のように風上側のアーチが内側に大きくへこんで、倒壊する事例が見られます。この後も強風が続くと、棟ジョイントや地面からパイプが抜けて全壊に至ることもあります。また、地中へのパイプの押込みが浅い場合や地際部が腐食して折れていると、倒壊以前にハウス全体が吹き飛ぶこともあります。

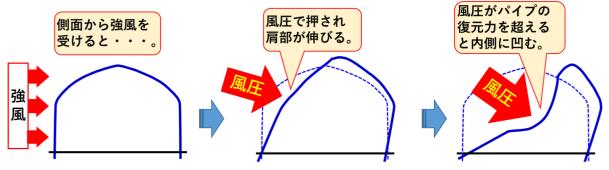


図16 強風による倒壊のメカニズム

図17 強風によるパイプハウス倒壊事例(鳥取県農業共済組合)

側面から見たパイプハウスは、垂直に立てられたアーチパイプと水平に取り付けられた数本のパイプで構成された長方形の格子状の構造をしています。風圧によって妻面が押されて、パイプを固定している金具の強度を上回ると、長方形の格子が変形してアーチパイプが傾きます。この場合、妻面付近が倒伏しますが、風が強いとアーチパイプがドミノ倒しのように奥行き方向に倒れて倒壊することがあります(図18)。

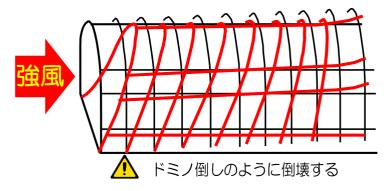


図18 強風による倒壊のメカニズム (静岡県原図を一部改変)

(1) 風上側の肩部分から屋根の破損を防止する補強

- ①タイバーによる補強···屋根が押されて伸びる・へこむ現象を防止する。 (再掲3~4ページ)
- ②単管パイプによる側面の補強(図19、図20、図21) アーチパイプ肩部に奥行方向へ ϕ 48.6mm直管を固定する。同じく ϕ 48.6mm直管をカットして地中に打込み、奥行方向の直管及び胴縁パイプに固定する。

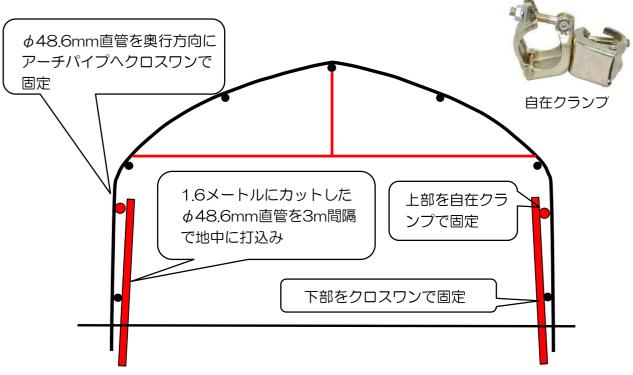


図19 単管パイプおよびタイバーによるパイプハウスの補強 (静岡県原図を一部改変)

図20 自在クランプによる 単管パイプの固定 (静岡県原図)

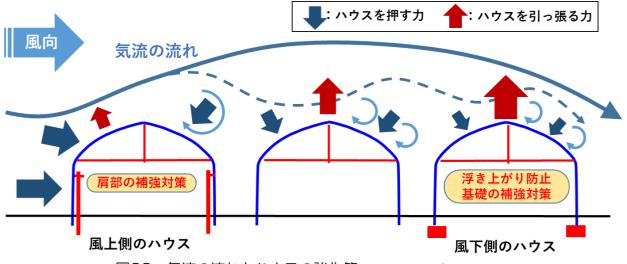
自在クランプによる固定

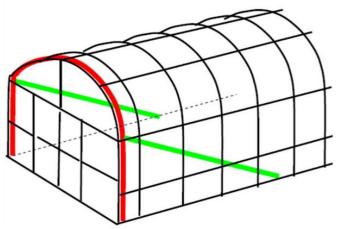
クロスワンによる固定

クロスワンに よる固定

図21 単管パイプによる補強 (静岡県原図を一部改変)

③ハウス上部を通過する風はハウスを引っ張り上げる力が働き、特に、複数ハウスが並ぶ場合は気流が変化し、風下側のハウスはより大きな力で引っ張られます(図22)。側面からの風圧に加え、浮き上がり防止の基礎の補強やらせん杭の本数を増やすことが重要です(軟弱地盤でも効果が高い)。




図22 気流の流れとハウスの強化策 (渡辺パイプ原図を一部改変)

(2) 妻面からの破損を防止する補強

- ①筋交いの設置(共通事項参照)
- ②方杖による補強(図23) 筋交いに加えて設置すると補強効果が 高まります。
- ③妻面つっかえ棒による補強(図24)
- ④防風ネットによる補強(図25)

図23 逆V字方杖 (JA全農さいたま原図を一部改変)

補強材料は直径42.7mmの足場用の鉄パイプ (緑)。 妻面アーチ (赤) に取付け固定し、妻面アーチ支えるつっかえ棒とする。

図25 妻面の防風ネットによる補強

図24 妻面つっかえ棒による補強(静岡県原図を一部改変)

6 ブドウ連棟ハウスの補強方法(風害対策)

春先の強風や台風による被害を防止するため、ブドウの連棟ハウスでは(1)Xタイバーによるアーチパイプの補強、(2)アンカーの設置や増設による基礎やパイプの浮き上がり防止対策、(3)ブレースの設置による妻面からの変形防止などの対策が必要です。

補強は風当たりが強いほ場を優先します。また、9月まで被覆する 'シャインマスカット'のハウスは、強い台風による被害を受けるリスクが高いので特に補強が必要です。なお、ハウスの補修(サビ止め、針金の締直し等)は随時行います。

ここでは、平成30年度北条ブドウハウスの長寿命化技術開発事業による独立行政法人 鳥取県産業技術センター機械素材研究部の強度解析をもとに、間口4m×7連、長さ70 m、主支柱間2m(図26)の連棟ハウス(20a)を想定して記述します。

図26 現在主流のブドウ連棟ハウス

(1) Xタイバーによるアーチパイプの補強

基本的に4ページのXタイバーによる補強に準じます。連棟ハウスの場合、両端のアーチパイプに取り付ける(図27)ことで補強することができます。

図27 連棟ハウスのXタイバーによる補強

取り付け本数によって耐風性能は表1のようになります。

表 1	両側の棟の	アーチ部へXタ~	イバー設置効果 "

設置方法 (20a ハウス)	箇所数 ²⁾	パイプの耐風性能 (補強無しとの比較)
支柱1つ間隔で設置	36	約 140%アップ
支柱2つ間隔で設置	24	約 60%アップ

- 1) 風向き・風の強さ、ハウスの構造などの条件で解析結果は異なる
- 2) 主支柱間は2m

(2) アンカーによる補強

図28に示す条件で耐風強度を測定すると、各支柱の根元には浮き上がる力と沈み込む力がともにかかります(図29)。

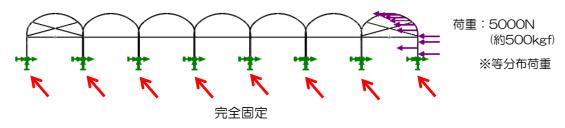
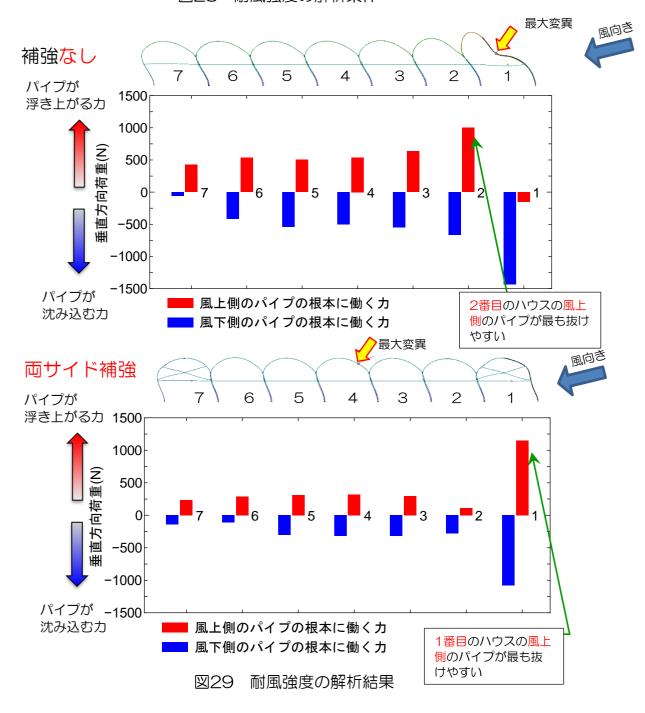



図28 耐風強度の解析条件

補強なしの場合、2番目のハウスの風上側のパイプが最も抜けやすくなり、1番目

のハウスの変形が最も大きくなります。 両サイドに補強のXタイバーを入れた場 合、2番目のハウスの風上側のパイプが 最も抜けやすく、4番目のハウスの変形 が大きくなります。また、同一基礎上で 浮き上がる力と沈み込む力がかかると基 礎の負荷が大きくなり、基礎が破損する ことがあります。

これらの現象を防止するため、アンカ ーを設置します。アンカーの設置は図31 に示す手順で実施します。

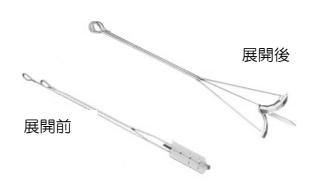


図30 補強に用いるアンカー

(1)アンカーを打ち込む(アイ(先端の輪)が沈 み込まないよう棒を通しておく(右図矢印)

②適正に打ち込まれた状態(アイ が同じ位置にある)

③パイプに半鋼線を結ぶ

④アンカーに半鋼線を結ぶ ⑤別の半鋼線でパイプと結 び、締める

6完成

⑦ハウスサイド

図31 アンカー設置の手順

パイプとアンカーを結ぶ線は丈夫な半鋼線 を使用する。主支柱と同様、ハウスサイド のパイプも半鋼線を用いて締める(⑦)。

(3) ブレースによる補強

ハウス妻面方向からの強風によるハウス骨材の変形や浮き上がりを防止するため、 ブレース(筋交)を施工します(図32)。

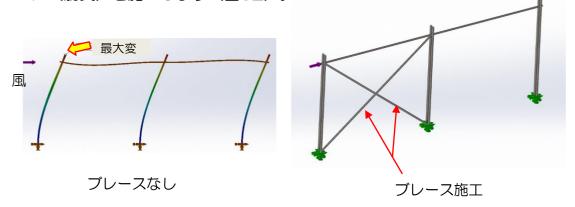


図32 ブレース施工の有無と変形の様子

ブレースの設置はクロスタイバーの設置と同様の手順で行います(4ページ参照)。 両端を主支柱に固定し、クロス部分はアングルバンドで固定します。図33に施工例を 示します。この場合、2つの主支柱を繋ぐ形になります。

以上の解析結果を基に連棟ハウスの強化対策の一例を図34に示します。

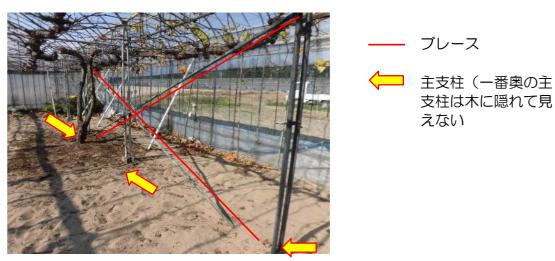


図33 ブレース施工例

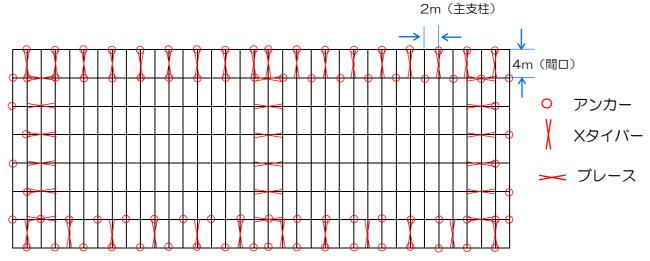
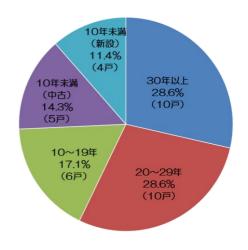


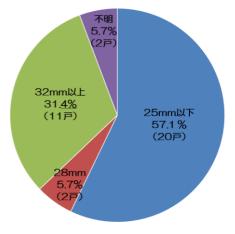
図34 解析結果を基にした連棟ハウス強化対策の一例

7 大雪による農業用パイプハウスの倒壊要因の解析

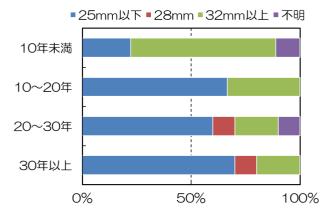

平成29年1月23日および2月10日の大雪により、県下でパイプハウス489棟が損壊または倒壊する大きな被害を受けました。そこで、今後の対策のため倒壊ハウスの実態を調査し、倒壊要因を解析しました。

(1)調査方法

農業改良普及所等により、被害を受けた306戸のうち倒壊被害の大きかった野菜・花きハウス(東部10戸、中部14戸、西部11戸)について倒壊ハウスの状況、雪害対策の実施状況等を現地確認および聞き取り調査しました。

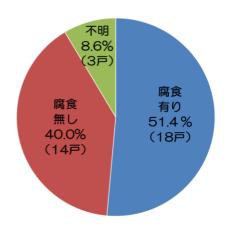

(2) 倒壊要因の解析

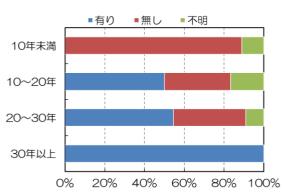
1)ハウス設置年数



- * 設置年数 20 年以上が 57%。
- * 設置年数 10 年未満 9 戸のうち、 中古ハウスの移設が 5 戸。 (通算の設置年数は不明)
- * 10年未満の新設ハウスは11%。

2) アーチパイプ径

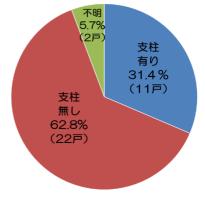

- * 倒壊ハウスの 57%がアーチパイプ径 25mm 以下。
- 32mm 以上 11 戸のうち、<u>中古ハウスの</u> <u>移設 4 戸</u>、連棟ハウス 2 戸、イスラエル 仕様 1 戸。

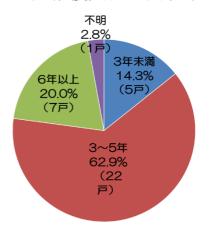


* 設置年次が古いハウスほどアーチパイプ径 が細い(28mm 以下)割合が多い。

当時の標準仕様

3) 設置年数とアーチパイプの腐食


- * 倒壊ハウスの51%でアーチパイプの腐食を確認。
 - ⇒ 強度低下

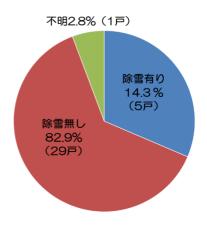

- * 30 年以上経過したハウスは全てで 腐食を確認。
- * 古いハウスほど腐食割合が高い。
- * 10年未満は腐食はほとんど無い。

4)補強対策の状況

- * 補強支柱無し ⇒ 63%
- * 設置していても<u>設置間隔が広く(5~10m)</u>補強不足。

5)被覆資材の展張年数

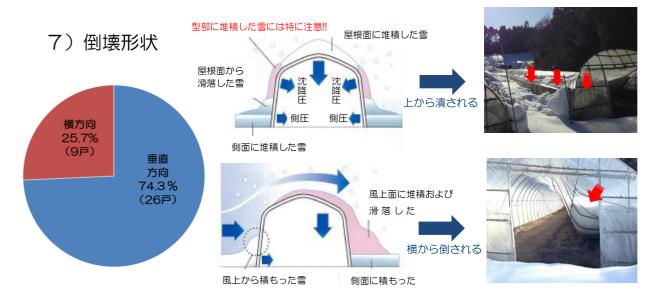
* 3~5年が63%だが6年以上の長期展張も20%。


同一圃場で被覆を張り替えたハウスは無事だが、展張6年以上のハウスが倒壊

展張年数は短かったが周辺の工事の粉じんが付着。

被覆資材の汚れ等による雪の滑落性低下

6)除雪



- *「除雪無し」 ⇒ 83%
- ◎「除雪無し」の理由
 - ハウス間が狭く(1~1.5m)除雪できない。
 - ・他のハウスを除雪中に倒壊。
 - ・除雪中にハウスからの落雪で 身の危険を感じて中止。

- ・垂直方向(ハウス頂部が押し潰される)の倒壊が74%。被覆上の雪がずり落ちない。ハウスサイドに雪が積み上がり落ちるスペースがない。
- 横方向は西側からの雪圧による倒壊。風向やハウス配置などによる偏った積雪。

8) その他

- ○連棟ハウス谷部を融雪装置で散水したが、積雪スピードに対して水量不足で倒壊。
- ○連棟ハウス谷部を雪が溜まらないよう谷部分を解放、単棟ハウスでハウスサイドを 解放 ⇒ ハウス内気温の低下で雪がずり落ちないため倒壊。

(3) まとめ

- 〇設置年数20年以上のハウスで倒壊が多い。導入年次の古いハウスはアーチパイプ径 25mmが主流で強度が弱く、パイプの腐食も進行。
 - ⇒ これらのハウスは重点的な補強が必要。
- 〇アーチパイプ径32mmでも中古ハウスを移設した場合は倒壊事例多く、移設による 強度低下の考慮が必要。
- ○支柱設置していても設置間隔が広いハウスは倒壊。補強不足が推測される。
- ○急激な積雪による対応の遅れ(除雪、支柱設置)も要因。
 - ⇒ 対策は降雪期までに準備、実施。
- ★大雪にはいつ遭遇するか分かりません。毎年、冬季は大雪があることを 想定して対応しましょう。

【参考】鳥取県における積雪深(cm)の再現期間

地区			再	現期間			
地區	11 年	15 年	16 年	22 年	30 年	43 年	57年
鳥取	80	87	89	96	104	112	119
倉吉	45	50	51	56	61	67	71
米子	50	55	56	61	65	71	75
境	48	53	54	59	64	69	74
智頭	78	86	87	95	102	111	118
大山	259	275	278	295	311	329	344

(園芸用施設設計施工標準仕様書付表より)

※例えば、鳥取では11年に一回は80cmの積雪が想定される。

なお、15~18ページでとりまとめた平成29年1月~2月の大雪被害以降も、降雪によるパイプハウスの損壊または倒壊する大きな被害を受けています。令和2年12月14日~16日、12月30日~令和3年1月1日の大雪により、県下で120棟のハウスが倒壊しました。その翌年の令和3年12月25日~27日及び12月31日~令和4年1月1日の大雪により、県下で41棟のハウスが倒壊しました。さらに、令和5年1月24日~28日の大雪により、県下で78棟のハウスが倒壊しました。

また、前ページ(18ページ)で鳥取市では11年に1回の80cmの積雪が想定されていますが、上記の被害ではそれと同等程度の積雪となっており、近年、想定より再現頻度が短くなっているようです。

令和3年12月25日から令和4年1月1日の大雪による倒壊ハウスのうち、被害ハウス22棟と令和5年1月24日~28日の大雪による倒壊ハウスのうち、被害ハウス30棟の調査をしたところ、短時間でハウスの上に雪が降り積もったことで、倒壊前の除雪が実施できたハウスはなく、積もった雪がずり落ちずに垂直方向に潰れた事例がほとんどでした。また、耐雪対策としての支柱(中柱)の設置間隔が理想(目標)の3m間隔より広く対策が十分ではないことがわかりました。

【参考1】令和3年12月25日~令和4年1月1日の大雪による被害ハウスの積雪量と倒壊形状

積 雪 量(cm)			倒壊	形状
40~60 60~80 80~90		垂直方向	横方向	
10棟	7棟	5棟	19棟(86%)	4棟(14%)
合計:22棟			合計	:22棟

【参考2】令和5年1月24日〜28日の大雪による被害ハウスでの積雪量と倒壊形状

積雪量(cm)		倒壊	形状
40~60	60~80	垂直方向	横方向
15棟	15棟	26棟(87%)	4棟(13%)
合計:30棟		合計:	30棟

このように、近年想定を超えるような積雪となっており、余裕を持った事前の対策と 安全に配慮した早急な事後の対策が重要となっています。

上記の事例では、被害時期が12月中旬から2月となっていますが、12月上旬や3月以降に被害がないわけではありません。被害ハウスの棟数が少ないだけですので、十分な注意が必要です。

21~22ページのチェックリストを活用し、冬期前から降雪後までの雪害対策に不備がないか、必ず点検を行ってください。

また、農林水産省のホームページに「自然災害等のリスクに備えるためのチェックリスト」と「農業版BCP(事業継続計画書)」のフォーマットが掲載されていますので参考にしてください。

https://www.maff.go.jp/j/keiei/maff_bcp.html (農林水産省のホームページ)

8 園芸施設共済制度の活用について

(1) 園芸施設共済の対象

園芸施設が損害を受けた場合に補償します。パイプハウスをはじめとする特定園芸施設(ハウス本体・被覆材)と選択加入(オプション)の附帯施設、施設内農作物、撤去費用、復旧費用となります。

(2) 対象となる災害

風水害、ひょう害、雪害その他気象上の原因による災害、火災、破裂および爆発、 航空機の墜落及び接触並びに航空機からの物体の落下、車両及びその積載物の衝突及 び接触、病虫害、鳥獣害

(3)補償期間

共済掛金の支払日の翌日から1年間

(4) 主な補償内容(令和5年4月現在)

- 加入されるハウスの共済価額(時価額)に対して、補償の割合(付保割合)を 40%~80%から選択できます。
- ・また特約を付加すると付保割合を100%まで引上げることができます(施設内農作物に係るものを除く)。
 - ※付保割合は一棟ごとに選択できます。
 - ※附帯施設、施設内農作物、撤去費用、復旧費用を付加する場合は、その共済価額(時価額)を含みます。

雪害等防止対策費の助成

NOSAI鳥取では、雪害等対策で施設の補強を行った共済加入者様への経費の一部助成を実施しています(令和5年度現在)。

詳細については、お近くの農業共済組合へお尋ね下さい

NOSAI 鳥取(本所) TEL: 0858-37-5631 鳥取県東伯郡北栄町東園271
NOSAI 鳥取(東部支所) TEL: 0857-37-3301 鳥取県鳥取市賀露町4074
NOSAI 鳥取(中部支所) TEL: 0858-37-5252 鳥取県東伯郡北栄町東園271
NOSAI 鳥取(西部支所) TEL: 0859-22-1001 鳥取県米子市上福原658-1

9 雪害を防止するためのチェックリスト

(1) 冬期前までに確認しておくチェック項目

チェック欄	点検項目のポイント
	万が一の被害を想定して、園芸施設共済に加入しているか。
	ハウスの柱やアーチパイプなどに錆びや破損はないか。
	ビニールフィルム等被覆資材の取り付け金具の調整、ハウスバンドの緩み、破損部分の補修はできているか。
	ハウス屋根の外側に設置した、遮光資材などは外したか。
	冬期に使用しないパイプハウスの場合、被覆資材は取り除いたか。
	可能なかぎり、陸ばりや筋交い、番線による強化などを行っているか。
	作業の邪魔になるという理由で、柱間ブレースや陸ばりなどを外していないか。外してあれば元に戻しているか。
	中柱は直ちに設置できる準備ができているか(部材と固定する準備はできているか)。
	中柱が金属の場合は錆がないか。竹や木材の場合は割れや損傷がないか。
	暖房機の掃除、点検、動作確認はできているか。

(2) 降雪の予報が出た前日のチェック項目

チェック欄	点検項目のポイント
	天気予報や気象庁等の行政情報は、最新のものを確認しているか。
	降雪前にハウスを密閉し、内部の保温を実施しているか。
	除雪作業用道具の確認と準備はできたか(除雪機がある場合、燃料確保も 含む)。
	除雪、早めの雪おろしなどを計画はできているか。
	暖房機の稼働開始時間設定などの準備はできたか。
	暖房機用の燃料は十分確保できているか。
	フィルムの取り付け金具やハウスの接合部分などの問題はないか(改めて確認したか)。
	夜間の点検、除雪に備えて、懐中電灯などの明かりの確保はできたか。

(3) 降雪時のチェック項目

チェック欄	点検項目のポイント
	天気予報や気象庁等の行政情報は、最新のものを確認しているか(今後の予報も含む)。
	施設までの農作業道の安全確認はできたか。
	安全な作業ができる範囲で、可能な限りの除雪、雪おろしをしたか(除雪・雪おろしは、ヘルメットや滑りにくい靴を着用すること)。
	除雪作業は、複数人で行っているか。万が一の場合の連絡手段は整っ ているか。
	暖房機が設置されていない施設は、内張を開放して地熱の放射により室 温を上昇させ融雪を促しているか。
	暖房機が設置してある施設は、内張を開放して暖房機を稼働させ、融雪を 促しているか。
	停電が発生していないか(暖房機の停止等)。

(4) 降雪後のチェック項目

チェック欄	点検項目のポイント
	安全な作業ができる範囲で、十分な除雪、雪おろしはしたか(除雪・雪おろ しは、ヘルメットや滑りにくい靴を着用すること)。
	施設各部の損傷・弛みなどの有無を総点検したか。必要があれば速やかに補修したか。
	降雪後、適宜換気を行い、天候回復後に防除を行ったか。
	万が一被害があった場合、施設の被害状況の写真や作物の状況の写真を撮影し、園芸施設共済加入施設については速やかに農業共済へ連絡したか。

10 強風・台風被害を防止するためのチェックリスト

(1) 普段から確認しておくチェック項目

チェック欄	点検項目のポイント
	万が一の被害を想定して、園芸施設共済に加入しているか。
	ハウスの柱やアーチパイプなどに錆びや破損はないか。
	フィルムの取り付け金具の調整、ハウスバンドの緩み、破損部分の補修 はできているか。
	可能なかぎり、陸ばりや筋交いによる補強対策を行っているか。
	連棟ハウスでは、谷樋、谷柱、谷梁の部分や部品の接合部に腐食やサビが生 じていないか。ブレース等の緩みがないか。
	出入り口の戸車やレールに傷みやガタつきが生じていないか。
	被覆資材が耐用年数を超え、劣化していないか。
	被覆資材の破れ、巻き上げ部分やハウスバンドによるスレや破れはない か。また、補修はしているか。
	以前に強風等によって曲がってしまったパイプを再利用していないか。その場合は新しい部材で補修してあるか。
	防風ネットを設置している場合、ネットに破れや緩みはないか。支柱の傾き 等、強風によって損壊する部分はないか。

(2) 台風・強風の襲来前のチェック項目

チェック欄	点検項目のポイント
	天気予報や気象庁等の行政情報は、最新のものを確認しているか。
	施設周辺は片付いているか(飛散するものはないか)。
	風が吹き込むことが予想される隙間や妻換気部、換気扇の吸入口は全て塞いであるか。
	フィルムのたるみや破れはないか。破れは補修してあるか。
	ハウスバンドやフィルムの取り付け金具(スプリング等)に緩みがない か。
	出入り口の戸締まりは行ってあるか。また、戸車やレールの損傷はないか (確認したか)。
	連棟ハウスの場合、ブレースに緩みはないか。

つづき

チェック欄	点検項目のポイント
	以前に被災した箇所の修繕は出来ているか(確認したか)。
	台風の場合、豪雨に備えて施設周辺の排水対策はできているか。
	連棟ハウスでは谷樋、立樋にゴミやつまりはないか。
	補修用テープ、ハウスバンド、スプリング等の補修用資材は準備してあるか。
	特に風を強く受ける部分の補強は行われているか。

(3) 台風・強風の襲来直前のチェック項目

チェック欄	点検項目のポイント
	天気予報や気象庁等の行政情報は、最新のものを確認しているか。
	出入り口等 、 施錠できるところはしっかり戸締まりしてあるか(再確認したか)。
	ハウスサイドや妻換気部、換気扇吸入口はしっかりしまっているか(再確認したか)。
	換気扇のあるハウスは換気扇を止めているか(吸入口を塞ぎフィルム を引きつけているか)。

(4)台風・強風の襲来後のチェック項目

チェック欄	点検項目のポイント
	施設設各部の損傷・弛みなどの有無を総点検したか。必要があれば速やかに補修したか。
	強風が収まった後、適宜換気を行い、天候回復後に防除を行ったか。
	万が一被害があった場合、施設の被害状況の写真や作物の状況の写真を撮影し、園芸施設共済加入施設については速やかに農業共済に連絡したか。

【参考・引用文献】

生産者が自分でできる補強資材等によるパイプハウスの構造強化対策(農林水産省)「ハウス本体の補強方法」(鳥取県農業共済連合会)

雪害によりハウスが倒壊するのを防ぐために(長野県)

施設園芸における強風対策技術導入マニュアル(静岡県)

園芸用施設安全構造基準((一社)日本施設園芸協会)

平成26年2月の大雪被害における施設園芸の被害要因と対策指針 ((一社)日本施設園芸協会)

パイプハウス強化マニュアル(ホクレン資材部)

降雪に対する農業施設の技術対策について(JA全農さいたま)

雪害に対する農業用ハウス強化マニュアル(群馬県)

ハウス教本丸わかり 風雪被害の対策・予防編(渡辺パイプ株式会社)

平成30年度北条ブドウハウスの長寿命化技術開発事業報告書

問い合わせ先

鳥取県 農林水産部農業振興局経営支援課 (鳥取県農業気象協議会事務局)

〒680-8570 鳥取市東町-丁目220番地 電話番号 0857-26-7327 ファクシミリ 0857-26-7294 Eメール keieishien@pref.tottori.lg.jp

鳥取県 農林水産部農業振興局生産振興課 〒680-8570 鳥取市東町一丁目220番地 電話番号 0857-26-7272 ファクシミリ 0857-26-8497 Eメール seisanshinkou@pref.tottori.lg.jp